• Решите уравнение 10/x+10(1+9/х+9(1+8/х+8(...(1+1/х+1)...)))=11

Ответы 1

  • \displaystyle \frac{10}{x}+10\left(1+\frac{9}{x}+9\left(1+\frac{8}{x}+8\left(\,\dotsc\,3\left(1+\frac{2}{x}+2\left(1+\frac{1}{x}+1ight)ight)ight)ight)ight)=11;\displaystyle 10\left(\frac{1}{x}+1+9\left(\frac{1}{x}+1+8\left(\,\dotsc\,3\left(\frac{1}{x}+1+2\left(\frac{1}{x}+1+\frac{1}{x}+1ight)ight)ight)ight)ight)=11;\displaystyle u=\frac{1}{x}+1;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+3\left(u+2\left(u+uight)ight)ight)ight)ight)ight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+3\left(u+4uight)ight)ight)ight)ight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+15uight)ight)ight)ight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+64uight)ight)ight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+325uight)ight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+1956uight)ight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+8\left(u+13699uight)ight)ight)=11;\displaystyle 10\left(u+9\left(u+109600uight)ight)=11;\displaystyle 10\left(u+986409uight)=11;\displaystyle 9864100u=11;\displaystyle u=\frac{11}{9864100};\displaystyle \frac{1}{x}+1=\frac{11}{9864100};\displaystyle \frac{1}{x}=\frac{11-9864100}{9864100}=-\frac{9864089}{9864100};\displaystyle x=\boxed{-\frac{9864100}{9864089}}\phantom{.}.
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years