по a и b находим медианы м1 и м2, равные 1,5а и 1,5 b соответственно.Пишем теорему Пифагора для прямоугольных треугольников у которых гипотенузы - медианы, а прямой угол тот же, что у исходного треугольника. Катеты исходного треугольника обозначим к1 и к2.0.25 к1^2+к2^2=м1^20,25 к2^2+к1^2=м2^2гипотенузу обозначим Г Складываем уравненияПолучаем: 0.25 Г^2 +Г^2=м1^2+м2^2Вспомнив обозначения :Г=2*1,5sqrt(a^2+b^2) В прямоугольном треугольнике медиана из вершины прямого угла равна половине гипотенузы, значит 1,5sqrt(a^2+b^2) , а искомый отрезок равен 2/3 медианы, т.е.sqrt(a^2+b^2). Всюду sqrt(.) - взятие квадратного корня.Ответ : искомый отрезок равен sqrt(a^2+b^2) Красивый факт. Не знал.я