Решение1) y = √(8 - x) / xf(1) = √(8 - 1) / 1 = √7f(3) = √(8 - 3) / 3 = √5 / 3f((4) = √(8 - 4) / 4 = √4 /4 = 2/4 = 1/2f(7) = √(8 - 7) / 7 = 1/72) 2.1 y = 1 / (x² - 3x)y = 1 / (x² - 3x)f(1) = 1 / (1² - 3*1) = - 1 / 2f(3) = 1 / (3² - 3*3)1/0 = ∞f(4) = 1 / (4² - 3*4) = 1 / (16 - 12) = 1 / 4f(7) = 1 / (7² - 3*7) = 1 / (49 - 21) = 1 / 282.2 y = 1 / (x² - 5x + 4) f(1) = 1 / (1² - 5*1 + 4) = 1 / 0 = ∞f(3) = 1 / (3² - 5*3 + 4) = 1 / (9 - 15 + 4) = - 1 / 2f(4) = 1 / (4² - 5*4 + 4) = 1 / (16 - 20 + 4) = 1 / 0 = ∞f(7) = 1 / (7² - 5*7 + 4) = 1 / (49 - 35 + 4) = 1 / 102.3 y = √[(x - 4)/x + 1)] f(1) = √(-3)/0 = ∞f(3) = √[(3 - 4)/3 + 1)] = √-1/4 не существуетf(4) = √[(4 - 4)/4 + 1)] = √0/5 = 0f(7) = √[(7 - 4)/7 + 1)] = √3/8