• Найдите хотя бы одно число, произведение всех натуральных делителей которого равно 10^90

Ответы 1

  • Тоже уже задавали этот вопрос. Это число 10^9 = 1 000 000 000.Его делители: 2, 2^2, 2^3, ..., 2^9; 5, 5^2, 5^3, ..., 5^9; 10, 10^2, 10^3, ..., 10^9Их произведение равно2*2^2*2^3*...*2^9*5^*5^2*5^3*...*5^9*10*10^2*10^3...*10^9 == 2^(1+2+3+...+9)*5^(1+2+3+...+9)*10^(1+2+3+...+9) == 2^45*5^45*10^45 = 10^45*10^45 = 10^90
    • Автор:

      josiah118
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years