• На окружности пытаются разместить 25 черных и 21 белую точку так, чтобы среди них можно было насчитать как можно больше всевозможных троек, являющихся вершинами прямоугольных треугольников с черными вершинами у прямых углов. Каково наибольшее количество таких троек?

    Нормальное, обоснованное решение!

Ответы 1

  • Есть один факт, который сильно поможет в решении данной задачи:Прямой угол, вписанный в окружность, опирается на его диаметр.Таким образом, если мы разместим две какие-либо точки на противоположных сторонах диаметра - то ЛЮБАЯ черная точка будет образовывать с этими двумя точками треугольник с прямым углом при вершине в черной точке.Возьмем все точки и разместим их попарно на разных сторонах диаметра.Тогда для любой черной точки найдется 22 пары точек (всего точек 46, пар точек 23, пар не содержащих взятую точку - 22), которые с ней образуют нужный треугольник. Всего черных точек 25, значит искомых троек = 25* 22 = 550Ответ: 550
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years