• Помогите пожалуйста с задачей на теорию вероятности.
    Муми-тролль утверждает, что в среднем два осенних дня из трех недостаточно солнечные, чтобы он чувствовал себя совершенно счастливым . Хемуль утверждает, что в среднем три осенних дня из четырех недостаточно дождливые, чтобы он чувствовал себя совершенно счастливым.
    Найдите вероятность того, что случайно выбранный день хотя бы один из них будет совершенно счастлив

Ответы 2

  • Из 12 дней в среднем 4 дня достаточно солнечные для Муми-Тролля и в среднем 3 дня достаточно дождливые для Хемуля.Получаем 7 дней, в которые кто-то из них будет счастлив.Вероятность 7/12
  • Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания. Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день. Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
    • Автор:

      isidro
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years