НОК (Наименьшее Общее Кратное) - двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка.Находится следующим образом: разлагаем данные числа на простые множители
выписываем все простые множители, входящие хотя бы в одно из данных
чисел, каждый из взятых множителей возводим в наибольшую из тех
степеней, с которыми он входит в заданные числа. Производим умножение.1. Выписываются все простые делители каждого числа: 68 = 2*2*17 57 = 3*19НОК (68; 57) = 2²*17*3*19 = 68*57 = 3876То есть для двух данных чисел наименьшим общим кратным будет их произведение, так что пример не очень удачный.2. Попробуем найти НОК (192; 1080) 192 = 2*2*2*2*2*2*3 = 2⁶ *3 1080 = 2*2*2*3*3*3*5 = 2³ * 3³ * 5 НОК (192; 1080) = 2⁶ * 3³ * 5 = 64*27*5 = 8640