• Решить неравенства
    a) [tex] 2^{x} \ \textless \ \frac{1}{2} [/tex]
    b) [tex] 3^{2x-1} -3^{2x-3} \ \textless \ \frac{8}{3} [/tex]
    c) [tex] 17 \frac{x}{y-8} \geq 17[/tex]
    d) [tex] log_{ 0.2} x\ \textless \ 3[/tex]
    e) [tex] log_{ 0.3} ( x^{2} +22)\ \textless \ log_{0.3} 13x[/tex]
    Возвести в степень
    a) [tex] (\frac{18a ^{9}l ^{3} c ^{8} }{3 x^{4} b ^{4}c ^{4} } ) ^{-3} [/tex]
    b) [tex]( \frac{7a ^{15}b ^{19}c ^{-24} }{21a ^{1}b ^{-2}c ^{4} } ) ^{ \frac{2}{7} } [/tex]
    Вычислить
    a) [tex] \sqrt{x81} * \sqrt{4} + \sqrt{4} \sqrt[3]{343} [/tex]
    b) [tex] \sqrt{9+6*1+1} [/tex]
    Упростить выражение
    a) sin(n+t)
    b) cos([tex] 90^{0} + t[/tex])
    c) tg ( [tex] \frac{3 \pi }{2} -t )[/tex]
    d) ctg ([tex] 360^{0} -t )[/tex]
    Найти основной периуд функции y=cos 3x
    Найти значение функций
    [tex]y=2sin(x- \frac{ \pi }{6} ) +1 [/tex] при x=[tex] \frac{4 \pi }{3} [/tex]
    y=cosx[tex] x^{2} [/tex] при x=[tex] \pi [/tex]

Ответы 2

  • Круто !
    • Автор:

      sara53
    • 6 лет назад
    • 0
  • a) \ \ 2^x\ \textless \ \frac{1}2\\ 2^x\ \textless \ 2^{-1}\\ x\ \textless \ -1\\ \\ b) \ \ 3^{2x-1}-3^{2x-3}\ \textless \ \frac{8}3\\ 3^{2x}*3^{-1}-3^{2x}*3^{-3}\ \textless \ \frac{8}3\\ t=3^{2x}\\ \frac{1}{3}t-\frac{1}{27}t\ \textless \ \frac{8}{3}\\ \\ \frac{8}{27}t\ \textless \ \frac{8}{3}\\ t\ \textless \ 9\\ 3^{2x}\ \textless \ 9\\ 3^{2x}\ \textless \ 3^2\\\\ 2x\ \textless \ 2\\ x\ \textless \ 1\\c) \ \ 17^{\frac{x}{y-8}}\geq17\\ \frac{x}{y-8}\geq1\\ x\geq y-8\\ \\ d) log_{0,2}x\ \textless \ 3\\ \frac{log_3x}{log_30,2}\ \textless \ log_327\\ log_3x\ \textless \ log_327*log_30,2\\ log_3x\ \textless \ log_3(27*log_30,2)\\ x\ \textless \ 27log_30,2\\ \\ e) \ \ log_{0,3}(x^2+22)\ \textless \ log_{0,2}13x\\ x^2+22\ \textgreater \ 13x\\ x^2-13x+22\ \textgreater \ 0\\ x^2-13x+22=0\\ D=(-13)^2-4*1*22=81=9^2\\ x_1=\frac{13+9}{2}=11; \ \ \ x_2=\frac{13-9}{2}=2\\ x\in(-\infty;2)\cup(11;\infty)a) \ \ (\frac{18a^9l^3c^8}{3x^4b^4c^4})^{-3}=\\ \\ =\frac{18^{-3}a^{9*(-3)}l^{3*(-3)}c^{4*(-3)}}{3^{-3}x^{4*(-3)}b^{4*(-3)}}=\\ \\ \frac{18^{-3}a^{-27}l^{-9}c^{-12}}{3^{-3}x^{-12}b^{-12}}=\\ =\frac{27(xb)^{12}}{18^3(a^9l^3c^4)^3}\\ \\ b) \ \ (\frac{7a^{15}b^{19}c^{-24}}{21a^1b^{-2}c^4})^{\frac{2}7}=\\ \\ =(\frac{a^{14}b^{21}c^{-28}}{3})^{\frac{2}7}=3^{-\frac{2}7}a^4b^6c^{-8}\\ a) \ \  \sqrt{x81}*\sqrt{4}+\sqrt{4}\sqrt[3]{343}=9\sqrt{x}*2+2*7=14+18\sqrt{x}\\
\\
b) \ \ \sqrt{9+6*1+1}=\sqrt{16}=4\\
\\
\\
b)\ \  cos(90^0+t)=-sin \ t \\\\
c) \ \ tg(\frac{3}2\pi-t)=ctg \ t\\
d) \ \ ctg (360^0-t)=-ctg \ t\\
y=cos(3x)Период функции y=cos(x) T=2πcos(x)=cos(x+T)cos(3x)=cos(3(x+K))3(x+K)=2π3x+3K=2πx=2/3πy=2sin(x-\frac{\pi}{6})+1; \ \ \ x=\frac{4\pi}3\\
y=2sin(\frac{4\pi}3-\frac{\pi}{6})+1=2sin(\frac{14\pi}{12})+1=2sin(\frac{\pi}{6})+1=2*0,5+1=2\\
\\
\\
y=cos(x^2); \ \ \ x=\pi\\
y=cos(\pi^2)=-0,903
    • Автор:

      mcgee
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years