• решите пример пожалуйста. lim(4x+3/4x-1)^(2x-3).x ->бесконечности

Ответы 1

  •  \lim_{x \to \infty}  (\frac{4x+3}{4x-1})^{2x-3} =  (\frac{4*\infty+3}{4*\infty-1})^{2*\infty-3} = \frac{\infty}{\infty}^{\infty} Неопределенность. Проведем преобразование  \lim_{x \to \infty} (\frac{4x+3}{4x-1})^{2x-3} = \lim_{x \to \infty} (\frac{4x-1+4}{4x-1})^{2x-3} == \lim_{x \to \infty} (1+\frac{4}{4x-1})^{2x-3} =  \lim_{x \to \infty} (1+ \frac{1}{\frac{4x-1}{4}})^{2x-3} == \lim_{x \to \infty} ((1+ \frac{1}{\frac{4x-1}{4}})^{\frac{4x-1}{4}})^{{\frac{4}{4x-1}}*{2x-3}} == e^{4\lim_{x \to \infty} {\frac{2x-3}{4x-1}}} = e^{4 * {\frac{2* \infty-3}{4* \infty-1}}} = e^{ \infty}Опять неопределенность, проведем преобразования= e^{4\lim_{x \to \infty} {\frac{2x-3}{4x-1}}} = e^{4\lim_{x \to \infty} {\frac{2-3/x}{4-1/x}}} == e^{4 * {\frac{2-3/\infty}{4-1/\infty}}} = e^{4 * {\frac{2}{4}}} = e^2 Ответе: \lim_{x \to \infty} (\frac{4x+3}{4x-1})^{2x-3} = e^2 
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years