• диагонали трапеции взаимно перпендиклярны. докажите, что средняя линия трапеции равная отрезку, который сполучает середины основ

Ответы 2

  • но трапеция не равнобедренна, только диагонали перпендикулярны
  • 1. Если в равнобедренной трапеции диагонали перпендикулярны, высота трапеции равна полусумме оснований.            Проведем  через точку C прямую CF, параллельную BD, и продлим прямую AD до пересечения с CF.              Четырехугольник  BCFD — параллелограмм ( BC∥DF как основания трапеции, BD∥CF по построению). Значит, CF=BD, DF=BC и AF=AD+BC.  Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции диагонали равны, а CF=BD, то CF=AC, то есть треугольник ACF — равнобедренный с основанием AF. Значит, его высота CN является также медианой. А так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине, то  что в общем виде можно записать как  где h — высота трапеции, a и b — ее основания.
    • Автор:

      copper67
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years