• Один турист вышел в 6 часов,а второй навстречу ему в 7 часов.Встретились они в 8 часов и не останавливаясь продолжили путь.Сколько времени затратил каждый из них на весь путь,если первый пришел в то место,из которого вышел второй, на 28 мин позже, чем второй пришел в то место,откуда вышел первый??Считается, что каждый шел без остановок с постоянной скоростью.

Ответы 1

  • Пусть х время за которое первый доходит до места второго после встречи тогда второй после встречи прошел за время Х-28/60 ч

     

    V1 скорость первого

    V2 скорость второго

     

    первый до встречи прошел 2 часа

    второй до встречи 1 час

     

    тогда складываем кто сколько прошел всего

    первый х+2

    второй Х-28/60+1

     

    Умнoжаем время на скорость и находим растояние между их стартами и они равны V1*(x+2)=V2*(x-28/60+1)

     

    у нас три неизвестных, мы избавимся от скоростей

    перенесем их в одну сторону а все остальное в другую

     

    выходит

    V1/V2= (x-28/60+1)/(x+2)

     

    это наш конечное уравнение, просто теперь сделаем замену скорсотям из другого выражения

     

     

     

    смотри, если если первый пришел в то место,из которого вышел второй, на 28 мин позже, чем второй пришел в то место,откуда вышел первый

     

    внимательно прочитав можно сделать вывод что

    растояние до встречи равно V1*2 (первый ехал до встречи 2 часа)

    и второй проехал ЭТО ЖЕ САМОЕ расстояние за х-28/60

     

    тогда

    V1*2=V2*(х-28/60)

    V1/V2=(x-28/60)/2

    подставляем последнюю строчку в наше конечное уравнение и решаем

     

     

    (x-28/60)/2=(x-28/60+1)/(x+2)

     

    решаем и упрощаем и вконце концов получается что

    x=5/3=1 час 40 мин

     

    тогда первый проехал за 3часа 40 минут

    а второй на 28 меньше 3 часа 12 минут

     

     

     

    • Автор:

      giovani
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years