• В равнобедренной трапеции MNPQ точки E и F- середины диагоналей MP и NQ. Найдите длину отрезка EF если NP=7 MQ=27

Ответы 1

  • через EF проведем прямую E1F1 || MQ и NP. Рассмотрим треуг.MNP: E1E-ср.линия его (т-ма Фалеса), E1E=NP/2=7/2=3,5.  Рассм. треуг. NPQ: FF1=NP/2=7/2=3,5.  E1F1-ср.линия трап.MNPQ, тогда E1F1=(MQ+NP)/2=(27+7)/2=17.  Отсюда:E1F1=E1E+EF+FF1, 17=3,5+EF+3,5  17=7+EF  EF=10.
    • Автор:

      mia6
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years