Несколько шахматистов играют по круговой системе (каждый по од- ному разу с каждым), при этом ничьих не было, и абсолютного победителя (выигравшего у всех остальных) не оказалось. Доказать, что найдутся такие участники А, Б и В, что А выиграл у Б, Б выиграл у В и В выиграл у А.