• ПОМОГИТЕ ПОЖАЛУЙСТА!!!!КТО СМОЖЕТ!!!Исследовать на сходимость числовой ряд

    question img

Ответы 1

  • Так как при любом n √(n³+2)>√n³, то члены данного ряда меньше соответствующих членов ряда с n-ным членом An=1/√n³. Поэтому если ряд ∑1/√n³ сходится, то сходится и данный ряд. Исследуем ряд ∑1/√n³ с помощью интегрального признака Коши. Так как функция f(x)=1/√x³ непрерывна и монотонно убывает в интервале (1;∞), то ряд ∑1/√n³ сходится, если сходится интеграл ∫f(x)*dx=∫dx/√x³, взятый на интервале (1;∞), и расходится, если этот интеграл расходится. Первообразная F(x)=∫dx/√x³=-2/√x, тогда F(∞)-F(1)=0-(-2/√1)=2. Значит, ряд ∑1/√n³ сходится, а вместе с ним сходится и данный ряд.Ответ: ряд сходится.  
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years