Найдите наибольшее и наименьшее значение функцииа) f(x)= 3x^5-5x^3 на промежутке [-4;2]б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1] Решение:а) f(x)= 3x^5-5x^3 на промежутке [-4;2]Находим производную функции f(x)= 3x^5-5x^3f'(x)= 5*3x^(5-1)-3*5x^(3-1) = 15x^4-15x^2 = 15x^2(x^2-1)= 15x^2(x-1)(x+1)Находим критические точки решив уравнение f'(x) = 0 15x^2(x-1)(x+1) = 0 х = 0; х = 1; х = -1.Находим значение функции в этих точкахf(-1)= 3(-1)^5-5(-1)^3 =-3 + 5= 2f(0)= 3*0^5-5*0^3 = 0f(1)= 3(1)^5-5(1)^3 = 3 - 5= -2Находим значение функции на границах интервалаf(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2]имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752Ответ: fmin=-2756, fmax=56. б) f(х)= (х+4)/х, на промежутке [-1;1] f(х)= (х+4)/х =1+4/хНаходим производную функции f(x)= 1+4/хf'(x)= (1+4/х)' = -4/x^2Данная производная не имеет нулевых значение и терпит разрыв в точке х=0.Функция f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода. Находим поведение этой функции при приближении к точке 0 справа и слева.
=- \infty)
= + \infty)
Значение функции на границах интервала равныf(-1) = 1 + 4/(-1) = -3f(1) = 1+4\1 = 5Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.