sin(2x)^4+cos(2x)^4=sin(2x)^4 + cos(2x)^4 + 2 * sin(2x)^2 * cos(2x)^2 - 2 * sin(2x)^2 * cos(2x)^2 = (sin(2x)^2 + cos(2x)^2)^2 - 2 * sin(2x)^2 * cos(2x)^2 = 1 - 2 * sin(2x)^2 * cos(2x)^21 - 2 * sin(2x)^2 * cos(2x)^2 = 5/82 * sin(2x)^2 * cos(2x)^2 = 3/84 * sin(2x)^2 * cos(2x)^2 = 3/4(2 * sin(2x) * cos(2x))^2 = 3/4sin(4x)^2=3/4Отсюда получаем совокупность уравнений:sin(4x) = √3/2sin(4x) = -√3/21) Из первого:а) 4x = π/3+2πn => x=π/12+πn/2, n∈Z0<=π/12+πn/2<=π0<=1/12+n/2<=1-1/12<=n/2<=11/12-1/6<=n<=11/6n={0, 1}При n=0: x=π/12 рад = 180/12 ° = 15°При n=1: x=π/12+π/2 рад = 15°+90°=105°б) 4x = 2π/3+2πk => x=π/6+πk/2, k∈Z0<=π/6+πk/2<=π0<=1/6+k/2<=1-1/6<=k/2<=5/6-1/3<=k<=5/3k={0,1}При k=0: x=π/6 рад = 180/6 ° = 30°При k=1: x=π/6+π/2 = 30°+90° = 120°2) Из второго:а) 4x = -π/3+2πn => x=-π/12+πn/2, n∈Z0<=-π/12+πn/2<=π0<=-1/12+n/2<=11/12<=n/2<=13/121/6<=n<=13/6n={1,2}При n=1: x=-π/12+π/2 рад = -15°+90°=75°При n=2: x=-π/12+2π/2 рад = -15°+180°=165°б) 4x = -2π/3+2πk => x=-π/6+πk/2, k∈Z0<=-π/6+πk/2<=π0<=-1/6+k/2<=11/6<=k/2<=7/61/3<=k<=7/3k={1,2}При k=1: x=-π/6+π/2 рад = -30°+90° = 60°При k=2: x=-π/6+2π/2 рад = -30°+180° = 150°Ответ: 60°,75°,150°,165°