• Доказать, что нельзя провести прямую так чтобы она пересекла все стороны 1001 угольника (не проходя при этом через его вершины)

Ответы 1

  • Пусть такая прямая есть. Раскрасим участки такой прямой внутри многоугольника в красный цвет, вне многоугольника - в синий. С одной стороны, оба "конца" прямой должны быть синими.С другой стороны, что в каждой точке пересечения цвет должен меняться с красного на синий или наоборот. Поскольку точек пересечения 1001, то один конец прямой будет красным, а второй синим.Противоречие.Значит, предположение о существовании такой прямой неверно, и такую прямую провести нельзя.
    • Автор:

      matilda49
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years