• найти обьем правильной треугольной пирамиды, если сторона основания равна 10√3, а боковое ребро равно √103

Ответы 1

  •  В основании пирамиды - правильный треугольник со стороной 10√3.Центр тяжести правильного треугольника приходится на точку пересечения его медиан, высот, биссектрис. Она делит эти отрезки  в отношении 2:1 считая от вершины. По теореме Пифагора находим высоту правильного треугольника с гипотенузой 10√3 и катетом 5√3. Второй катет равен 15 = √(300 - 75). Значит, центр тяжести находится в 10 от вершины. Теперь рассмотрим прямоугольный треугольник с гипотенузой, равной боковому ребру √103 и катетом, равным 10.Высота пирамиды равна √(103 - 100) = √3. Объём пирамиды вычисляем по формуле1/3 * Sосн.*H = 1/3 * (10√3)² √3/4 * √3 = 1/3*100*3*3/4 = 75.Объём пирамиды 75.
    • Автор:

      nolan280
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years