1)sinx+3cosx=22) sinx+3cosx=-21)2sin(x/2)*cos(x/2)+3(cos²(x/2)-sin²(x/2))=2(sin²(x/2)+cos²(x/2)) 2sin(x/2)cos(x/2)+cos²(x/2)-5sin²(x/2)=0 cos(x/2)≠0 2tg(x/2)+1-5tg²(x/2)=0 пусть y=tg(x/2) 5y²-2y-1=0 y1,2=((2+-√(4+20))/10=(1+-√6)/5 a) tg(x/2)=(1+√6)/5. x/2= arctg((1+√6)/5)+pi*n, x=2arctg((1+√6)/5)+2pi*n b) tg(x/2)=(1-√6)/5, x/2=arctg((1-√6)/5)+pi*n, x=2arctg((1-√6)/5)+2pi*n2)2sin(x/2)cos(x/2)+3(cos²(x/2)-sin²(x/2))=-2(sin²(x/2)+cos²(x/2)) 2sin(x/2)cos(x/2)+5cos²(x/2)-sin²(x/2)=0 2tg(x/2)+5-tg²(x/2)=0 y=tg(x/2) y²-2y-5=0, y1,2=((2+-√(4+20))/2=(1+-√6), tg(x/2)=1+-√6 c) x/2=arctg(1+√6)+pi*n, x=2arctg(1+√6)+2pi*n d) x/2=arctg(1-√6)+pi*n, x=2arctg(1-√6)+2pi*n Ответ: x1=2arctg((1+√6)/5)+2pi*n x2=2arctg((1-√6)/5)+2pi*n x3=2arctg(1+√6)+2pi*n x4=2arctg(1-√6)+2pi*n