• Докажите, что для любого натурального N, взаимно простого с 10,
    существует репьюнит (число из единиц), кратный N, например, 111
    делится на 3, а 111111 делится на 7 и 13

Ответы 1

  • При делении репьюнита на число N возможны N различных остатков: 0,1,...,N-1. Рассмотрим N+1 репьюнит (например, из одной, двух, ..., N+1 единиц) и их остатки при делении на число N. По принципу Дирихле найдется два репьюнита с одинаковыми остатками при делении на N. Пусть больший из них содерижит p единиц, а меньший q единиц, p>q. Рассмотрим разность этих репьюнитов. Это число делится на N, так как уменьшаемое и вычитаемое имеют одинаковые остатки при делении на N. С другой стороны, разность равна произведению репьюнита длины p-q на число 10^q. Поскольку числа N и 10 взаимно просты, числа N и 10^q также взаимно просты. Но тогда репьюнит длины p-q делится на N, что и требовалось.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years