В равнобедренном треугольнике высота, опущенная на основание равна 5, а высота, опущенная на боковую сторону равна 6. Найти площадь этого треугольника.Решение.1) S=(5·b)/2 S=(6·a)/2 ⇔5·b=6a, а - боковая сторона треугольника, b - основание треугольника.2) по теореме Пифагора: a²=(b/2)²+5² ⇔4a²-b²-100=05·b=6a, b=(6/5)a4a²-b²-100=0 ⇔ 4a²-(36/25)a²-100=0 ⇔(100-36)a²=2500 ⇔a²=2500/64a=50/8 ⇔ S=(6·a)/2 ⇔ S=(6·50/8 )/2 ⇔ S=150/8=18,75Дано: треугольник ABC - равнобедренный; AB=BCBK-высота, BK=60AP-высота, AP=96Найти: Sтреугольника ABCРешение.1) S=(96·a)/2 S=(60·b)/2 ⇔96·a=60b, 8a=5bAB=BC а - боковая сторона треугольника, AC=b - основание треугольника.2) по теореме Пифагора: a²=(b/2)²+60² ⇔4a²-b²-4·3600=08a=5b b=(8/5)a4a²-b²-4·3600=0 ⇔ 4a²-(64/25)a²-4·3600=0 ⇔[(4·25-64)/25]a²=4·3600 ⇔a²=4·3600·25/(36) ⇔ a=2·60·5/(6)=2·10·5=100a=100 ⇔ S=(96·a)/2 ⇔ S=(96·100)/2 ⇔ S= 4800