• треугольник ABC задан вершинами A=(1,2),B=(2,-2),C=(6,1). Найти угол между высотой CD и медианой BM

Ответы 1

  • Уравнение прямой проходящей через две точки с координатами (х₁;у₁) и (х₂;у₂)  имеет вид:

    (x-x₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)                                                                                                                          Уравнение прямой АВ:

    (x-1)/(2-1)=(y-2)/(-2-2)    или  -4(х-1)=у-2     или  4х+у-6=0.                          n₁(4;1)- нормальный вектор прямой АВ. Координаты нормального вектора прямой СD  легко подбираются устно:  n₂=(-1;4). У  перпендикулярных прямых нормальные векторы ортогональны, значит их скалярное произведение должно быть равно 0. 

    n₁· n₂=4·(-1)+1·4=0 Уравнение прямой, перпендикулярной  прямой АВ имеет вид:  -х+4у+k=0   

    Подставляем координаты точки С(6;1) для нахождения  k.     

     -6+4+k=0   ⇒  k=2. Уравнение прямой СD:  -x +4y+2=0

    Координаты точки М - середины отрезка АС:

     х=(1+6)/2=3,5, у=(2+1)/2=1,5. М(3,5; 1,5) Уравнение прямой ВМ как прямой, проходящей через две точки, заданные своими координатами,

    имеет вид: (x-2)/(3,5-2)=(y+2)/(1,5+2) или  3,5(х-2)=1,5(у+2)  или  7х-3у-20=0.

    Нормальный вектор прямой ВМ  n₃=(7;-3).

    Угол между прямыми СD и ВМ равен углу между их нормальными векторами n₂(-1;4) и n₃(7;-3).сos α= n₂ ·n₃/ | n₂|·| n₃|=((-1) ·7+4·(-12))/ √((-1)2+42) ·√(72+(-3)2)=

    =-19/√(17) ·√(58). α=arccos( -19/√(17) ·√(58))=π-arccos( 19/√(17) ·√(58))

     это тупой угол, а смежный с ним острый.

    В ответе берут острый угол.

     О т в е т.arccos( 19/√(17) ·√(58))

    • Автор:

      paola
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years