• сумма трех целых чисел делится на 6 доказать что и сумма кубов этих чисел делится на 6

Ответы 5

  • можно как то коротко
    • Автор:

      elmo
    • 5 лет назад
    • 0
  • щас
    • Автор:

      laneynr2v
    • 5 лет назад
    • 0
  • Для любого целого x^3-x=x(x^2-1)=x(x-1)(x+1) Произведение трёх последовательных чисел. Хотя бы одно из них делится на 2, ровно одно делится на 3, произведение делится на6 a^3+b^3+c^3-(a+b+c)=a^3-a+b^3-b+c^3-c, делится на 6. a+b+c делится на 6 Разность делится, вычитаемое делится, a^3+b^3+c^3 делится на 6.
    • Автор:

      tuxmbkv
    • 5 лет назад
    • 0
  • PS назначь ответ лучшим
  • Если сумма трех чисел делится на 6, то эта сумма - число четное. Здесь или все слагаемые - четные числа, или одно слагаемое - четное число, а два других - нечетные. В обоих случаях кубы этих чисел будут или все четные, или одно четное и два нечетных, что в сумме даст четное число. Остается доказать делимость на 3. Вариант, когда все слагаемые кратны 3 пояснений не требует. Рассмотрим другие варианты слагаемых 1. (3а+1) + (3в+1) + (3с-2) 2. 3а + (3в-1) + (3с+1) Сумма слагаемых кратна 3, т. к. свободный член = 0. Возводим в куб 27a^3 + 27a^2 + 9a + 1 + 27в^3 + 27в^2 + 9в + 1 + 27c^3 + 27c^^2 + 9c - 8 Все члены, кроме свободных, кратны 3. СВободные члены в сумме 1 + 1 - 8 = -6 дают число тоже кратное 3. Значит сумма кубов чисел кратна 3, а следовательно и 6. Аналогично доказывается другой вариант - сумма свободных членов будет кратна 3 или равна 0.
    • Автор:

      ibáñez
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years