• Дано уравнение: sin3x=sin2x+sinx
    а)Решите уравнение
    б) укажите корни этого уравнения принадлежащие отрезку [5pi; 13pi/2

Ответы 1

  • sin3x=sin2x+sinx3sinx-4sin³x=2sinx cosx+sinx3sinx-4sin³-2sinx cosx-sinx=0sinx(3-4sin²x-2cosx-1)=0sinx(-4sin²x-2cosx+2)=0sinx(-4(1-cos²x)-2cosx+2)=0sinx(-4+4cos²x-2cosx+2)=0sinx(4cos²x-2cosx-2)=0sinx=0,  4cos²x-2cosx-2=0x=πn,n∈z  замена cosx=y4y²-2y-2=02y²-y-1=0Д=1+8=9y1=1y2=-1/2⇒cosx=1;x=2πncosx=-1/2;x=+-arccos(-1/2)+2πn,n∈z;x=+-2π/3 +2πn,n∈zОтвет:[x=πn,x=2πn,x=+-2π/3+2πn],n∈z
    • Автор:

      sunny53
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years