• Здравствуйте!

    Задача:

    На острове живут только рыцари (которые всегда говорят правду) и лжецы (которые всегда лгут). Однажды встретились три жителя острова Вася, Петя и Коля. Каждый из них сказал одну фразу. Вася: "Петя рыцарь"; Петя: "Вася и Коля лжецы"; Коля: "Я рыцарь".

    Логические задачи такого рода решаются перебором. Очевидно, что фразу "Я рыцарь" могут говорить и лжец (лжёт про себя), и рыцарь (говорит правду про себя).

    Моё решение:

    Допустим, что Коля рыцарь. Тогда Петина фраза "Вася и Коля лжецы" означает, что Петя лжёт (т.к. по нашему допущению Коля рыцарь). Значит, Вася и Коля рыцари. Но Васина фраза "Петя рыцарь" является противоречием, т.к. Вася, будучи рыцарем, утверждает, что Петя рыцарь.

    Допустим, что Коля лжец. Тогда Петина фраза "Вася и Коля лжецы" означает, что Петя говорит правду (т.к. по нашему допущению Коля лжец). Значит, Вася и Коля лжецы. Но Васина фраза "Петя рыцарь" является противоречием, т.к. Вася, будучи лжецом, утверждает, что Петя рыцарь.

    Я пробовал подобный подход к Васе и Пете, но всюду натыкался на тот же самый тупик. Есть ли ошибка в моём решении? Или сама задача неверно поставлена? Спасибо.

Ответы 1

  • Если посмотреть на задачу, то получается, что Петя говорит-Петя и Коля лжецы, значит Вася говорит неправду, Коля тоже и получается, что правду говорит только Петя, что остальные двое лгут. Возможно это и направились, но у меня так))
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years