• Обозначим через f(n) наибольший нечетный делитель числа натурального числа n.Найдите f(101)+f(102)+f(103)+...+f(200)

Ответы 1

  • Для любых m,n, таких что 101≤m<n≤200, их наибольшие нечетные делители различны (в противном случае, для k<l имеем m=d·2^k, n=d·2^l, где d - наибольший нечетный делитель, откуда n/m=2^(l-k)≥2, но n/m≤200/101<2 - противоречие) Таким образом, каждый наибольший нечетный делитель числа из диапазона от 101 до 200 не превосходит 200, все они различны, их 100 штук, а значит они - все нечетные числа в диапазоне от 1 до 200 (их тоже 100 штук). Значит искомая сумма равна сумме всех нечетных чисел от 1 до 200, т.е. (1+199)·100/2=10000.
    • Автор:

      donald362
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years