• Основание прямой призмы прямоугольный треугольник с гипотенузой 10 см и катетом 6 см. Больший катет треугольника в основании призмы равен диагонали меньшей из боковых граней. Найти высоту призмы.
    Можно решение выслать фотографией с рисунком и решением

Ответы 1

  • Пусть ABCA1B1C1 - прямая призма, её основания - прямоугольные треугольники ABC и A1B1C1 с прямыми углами C и C1 соответственно. Катет основания AC = 6 см. (см. рис.).Все боковые грани имеют одинаковую высоту. Значит, меньшая боковая грань та, у которой меньше ширина. Это грань AA1C1C.По т. Пифагора BC=\sqrt{AB^2-AC^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8По условию задачи A1C = BC = 8 см.Тогда, из тр-ка AA1C по т. Пифагора высота призмы AA1AA1=\sqrt{A1C^2-AC^2}=\sqrt{8^2-6^2}=\sqrt{64-36}=\sqrt{28}=2\sqrt7
    answer img
    • Автор:

      asunción
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years