1) 1 - Sin²x - Sinx -5/9 = 0 | * 99 - 9Sin²x -9Sinx -5 = 09Sin²x + 9Sinx -4 = 0Sinx = y9y² + 9y - 4= 0D = b² - 4ac = 81 - 4*9*(-4) = 81 + 144 = 225y = -8+15/18= 1/6у = -23/18а)Sinx = 1/16х = (-1)ⁿ arcSin(1/6) + nπ, n ∈Zб) Sinx = -23/18нет решений.Ответ: х = (-1)ⁿ arcSin(1/6) + nπ, n ∈Z2) Sin²x + Cos²x - Sin²x + 3SinxCosx -2*1 = 0Cos²x +3SinxCosx -2(Sin²x + Cos²x) = 0Cos²x + 3SinxCosx -2Sin²x -2Cos²x = 0-Cos²x + 3SinxCosx -2Sin²x= 0 | : Cos²x ≠ 0-1 + 3tgx -2tg²x = 02tg²x - 3tgx +1 = 0tgx = y2y² - 3y +1 = 0D = 1y = 1 и у = 1/2а) tgx = 1x = π/4 + πk , k ∈Zб) tgx = 1/2x = arctg(1/2) + πn , n ∈Z3) Cos²x/2 - 2Sinx/2Cosx/2 +2Sin²x/2 -Sin²x/2 - Cos²x/2 = 0Sin²x/2 -2Sinx/2Cosx/2 = 0Sinx/2(Sinx/2 - 2Cosx/2) = 0Sinx/2 = 0 или Sinx/2 -2Cosx/2 = 0| : Cosx/2x/2 = πn , n ∈Z tg x/2 -2 = 0 x = 2πn, n ∈∈Z tgx/2 = 2 x/2 = arctg2 + πk, k ∈Z x = 2arctg2 + 2πk , k ∈Z