• вычислить объем (V) тела, ограниченного плоскостью x=b и поверхностью, образованной вращением вокруг оси OX графика заданной функции y=√(64-x^2), [0,4]

Ответы 2

  • объем тела вычисляется интегрированием по формулеV=  \pi \int\limits^4_0 { \(64-x^2)} \, dx = \frac{704}{3}* \pi  Пределы интегрирования от 0 до 4.ОТВЕТ 234 2/3*πА функция -  это обрезанный шар радиусом 8.
    answer img
  • Площадь круга на удалении x от нуля равна S(x)=пy²(x), а дифференциал объёма: dV = пy²dx = п(64-x²) dx, интегрируем и получаем:п ∫ (64-x²) dx = п ∫ 64 dx – п ∫ x²dx = 64пx – пx³/3 + C = (пx/3)( 192 – x² ) + C ;V = п ∫ (64-x²) dx |[0,4] = (пx/3)( 192 – x² ) |[0,4] = (4п/3)( 192 – 4² ) = (4п/3)( 192 – 16 ) = 704п/3 .
    answer img
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years