Решение3*4^×+2*9^×=5*6^× 3*(2^2x) +2*(3^2x) - 5*(2^x)*(3^x) = 0 делим на (2^x)*(3^x)3*(2/3)^x + 2*(1/(2/3)^x) - 5 = 0(2/3)^x = t3t + 2/t - 5 = 03t² - 5t + 2 = 0D = 25 - 4*3*2 = 1t₁ = (5 - 1)/6t₁ = 2/3t₂ = (5 + 1)/6t₂ = 11) (2/3)^x = 2/3x₁ = 12) (2/3)^x = 1(2/3)^x = (2/3)⁰x₂ = 0