• Образующая усеченного конуса составляет с плоскостью нижнего основания угол α. Диагональ его осевого сечения перпендикулярна образующей конуса. Сумма длин окружностей равна 2 πm. Найдите площадь боковой поверхности конуса.

Ответы 2

  • спасибо!
  • Радиус нижней окружности конуса найти легко - из прямоугольного треугольника: l/(2R) = cosA, отсюда R = l/(2cosA). Нужно понять, что осевым сечением конуса будет трапеция. Для того, чтобы найти радиус верхней окружности нужно провести 2 высоты в данной трапеции из верхних вершин в основание. Тогда нижнее основание равное 2R с другой стороны равно 2R = 2r + 2d, где d - крайние части нижнего основания, получившиеся в результате проведения высоты. Проведённые высоты образуют с образующей прямоугольный треугольник, тогда легко найти d: d/l = cosA. Далее 2R = 2r + 2lcosA. Отсюда r = R - lcosA. Тогда площадь: S = Пи * l * (l/(2cosA) + lcosA) = Пи * l^2 * 3 / (1/(2cosA) +cosA) Вроде так :)
    • Автор:

      billy39
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years