• В классе 36 человек. При проверке диктанта в классе оказалось, что грубые ошибки составляют не меньше четверти всех ошибок. Если бы каждый ученик сделал в 3 раза больше грубых ошибок и на 2 больше негрубых, то число грубых ошибок стало бы ровно в 5 раз меньше числа негрубых. Какое наименьшее число учеников могло написать диктант вообще без ошибок?

Ответы 1

  • Пусть количество грубых ошибок равно х, а не грубых - у. Перепишем условия задачи, используя это:1) x≥1/4*(x+y)/*44x≥x+y3x≥y2) 3x=(y+2*36)/5Так как 3x≥y и 3x=(y+72)/5, то (y+72)/5≥y/*5y+72≥5y72≥4y/:4y≤18С одной стороны, так как 3x≥y и y=15x-72, тогда 3x≥15x-7272≥12x/:12x≤6С другой стороны, получается система неравенств x≤6, y≤18. Из этого следует, что x+y≤24. Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 6, а не грубых - 18. Проверим, выполняется ли при этих значениях условие задачи: 15x=y+72,15*6=18+72,90=90 Значит, данные значения являются решением данной задачи. Всего учеников было 36, без ошибок напишут 36-18-6=12 человек.
    • Автор:

      jesusxxce
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years