• Помогите решить уравнение
    10^(1+x^2)-10^(1-x^2)=99

Ответы 3

  • Сори, редактор формул не поддерживает кириллицу
    • Автор:

      fuzzy
    • 6 лет назад
    • 0
  • Спасибо
  • 10^{1+x^2}-10^{1-x^2}=99
\\Range: x \in R
\\10*10^{x^2}-\frac{10}{10^{x^2}}=99
\\\frac{10*10^{2x^2}-10}{10^{x^2}}=99
\\99*10^{x^2}=10*10^{2x^2}-10
\\10*(10^{x^2})^2-99*10^{x^2}-10=0
\\Substitution: 10^{x^2}=t,\ range: t\ \textgreater \ 0
\\10t^2-99t-10=0
\\D=b^2-4ac=9801-4*10*(-10)=9801+400=10201
\\t=\frac{99+101}{20}\ \ or\ \ t=\frac{99-101}{20}
\\t=10\ \ or\ \ t=-\frac{1}{10}\ (out\ of\ range)
\\Reverse\ substitution: 10^{x^2}=10
\\x^2=1
\\Answer: x=1\ or\ x=-1
    • Автор:

      noahk18g
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years