• В предварительном туре школьной олимпиады по математике принимало участие 40 учащихся 5-х классов, которым предложили решить три задачи: №1, №2,№3. Задачу №1 правильно решили 19 учащихся, №2- 18 учащихся, №3 также 19 учащихся. Задачи №1 и №2 решили 7 человек, задачи №2 и №3- 9 человек, задачи №1 и №3- 7 человек, ни одной задачи не решили 3 ученика. Сколько учеников решили все задачи? Сколько учащихся решили только две задачи? Сколько учащихся решили по одной задаче?

Ответы 2

  • спасибо
    • Автор:

      brendon94
    • 6 лет назад
    • 0
  • Пусть х - количество учеников, которые решили все задачи, тогда (7-х) - решили только №1 и №2, (9-х) - решили только №2 и №3, (7-х) - решили только №1 и №3. 19-(7-х+х+7-х)=5+х - решили только №1, 18-(7-х+х+9-х)=2+х - решили только №2, 19-(9-х+х+7-х)=3+х - решили только №3.Так как 3 ученика не решили ни одной задачи, значит решили 40-3=37 учащихся.Складываем все данные кругов Эйлера:х+7-х+7-х+9-х+5+х+2+х+3+х=37;33+х=37;х=37-33=4.Таким образом, 4 ученика решили все задачи; (7-4)+(7-4)+(9-4)=3+3+5=11 - решили только две задачи; (5+4)+(2+4)+(3+4)=9+6+7=22 - решили только по одной задаче.Решение с помощью кругов Эйлера прилагается.
    answer img
    • Автор:

      cookie49
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years