• Доказать что из пяти диагоналей произвольного выпуклого пятиугольника всегда можно выбрать три таких, что из них можно составить треугольник.

Ответы 1

  • Можно доказать от противного.

    Допустим ,что нельзя построить треугольник через 3 диагоналей пятиугольника. Значит для всех диагоналей будет верно : a+b<c,a+c<b,........,d+e<a и a−b>c,.........d−e>b, где a,b,c,d,e-длины диагоналей пятиугольника.Тогда суммируя эти неравенства можно получить , что 2∗a<0,.....,2∗e<0. Противоречие, так как длины диагоналей не могут быть отрицательными числами.

    • Автор:

      ellen
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years