• найдите площадь круга, описанного около правильного треугольника, и периметр треугольника, если радиус вписанного в этот треугольник круга равен 2 корня из 3 см. Сделайте чертеж.

Ответы 1

  • Для правильного треугольника радиус вписанной окружности вычисляется по формуле r= \frac{a}{2 \sqrt{3} } , где а - сторона. Отсюда a=r*2 \sqrt{3} =2 \sqrt{3} *2 \sqrt{3} =4*3=12.P=3*12=36Радиус описанной вокруг правильного треугольника окружности вычисляется следующим образом: R=  \frac{a}{ \sqrt{3} } =\frac{12}{ \sqrt{3} } =\frac{12\sqrt{3}}{ 3 } =4\sqrt{3}.S= \pi R^2= \pi *16*3=48 \pi
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years