=-1800-x^2-y^2+80x+60y)
Находим подозрительные на экстремум точки. По необходимому условию экстремума, приравниваем первые частные производные нулю, решаем систему линейных алгебраических уравнений:

Из достаточного условия экстремума следует, что если дифф. квадратичная форма положительна, то точка является точкой минимума, если отрицательна - максимума. Составим матрицу H из вторых частных производных заданной функции и вычислим её в стационарной точке (в данном случае элементы H - константы):
=\left(
\begin{array}{cc}
-2 & 0 \\
0 & -2 \\
\end{array}
ight))
Для определения знака квадратичной формы можно воспользоваться критерием Сильвестра: если все угловые миноры матрицы положительны, то квадратичная форма положительна, если у угловых миноров чередуется знак (причём первый отрицательный), то квадратичная форма отрицательна.Первый элемент <0, а определитель матрицы H >0, следовательно стационарная точка x=40, y=30 является локальным максимумом.