Sп.п = 2*pi*R^2 + 2*pi*R*H - площадь полной поверхности. Если не учитывать крышку, то первое слагаемое будет без множителя 2.H = (Sп.п - 2*pi*R^2)/2*pi*R - выражаем высоту через радиус, Sп.п. - заданная константа.V = pi*R^2*H - подставляем сюда найденной для Н выражение. V = pi *R^2 * (Sп.п - 2*pi*R^2)/2*pi*R = = R * Sп.п./2 - pi*R^3 Найдем теперь максимум выражения от R. Для этого ищем производнуюV' = Sп.п/2 - 3*pi*R^2Sп.п/2 - 3*pi*R^2 = 0 R^2 = Sп.п/(6*pi)R = +- корень из этого выраженияметодом пробной точки ищем экстремумы: + -0 ----- пол.корень --------Ограничиваемся нулем, т.к.. радиус сугубо больше ноля.Видим, что пол. корень - локальный и глобальный максимум. R = sqrt(Sп.п/(6*pi))H = (Sп.п - 2*pi*R^2)/2*pi*R H/R = (Sп.п - 2*pi*R^2)/2*pi*R^2 R/H = (2*pi*R^2)/(Sп.п - 2*pi*R^2) И сюда надо подставить найденное значение R = sqrt(Sп.п/(6*pi)) Соответственно, если без крышки, то двойка убирается и ответ чуть изменится.