• Найдите тупой вписанный угол опирающийся на Хорду равную радиусу окружности ответ дайте в градусов

Ответы 1

  • Если центральный угол опирается на хорду, равную радиусу окружности, то этот центральный угол равен 60°, т.к. концы хорды и центр окружности образуют равносторонний треугольник. Вписанный угол равен половине центрального, т.е. 30°.Пусть A и B - точки, являющиеся концами хорды; а С - точка на окружности, из которой исходят два луча и проходят через точки А и В (т.е. образуется вписанный угол).С другой стороны хорды отмечаем точку D, из которой уходит тупой вписанный угол, опирающийся на нашу хорду. Вот этот угол ∠D (или ∠ADB) нам и надо найти.Рассмотрим вписанный четырёхугольник ADBC, который у нас получился. Известно, что в любом вписанном четырёхугольнике сумма противоположных углов равна 180°. Отсюда находим наш тупой вписанный угол, который противоположен углу ∠С = 30°: 180° - 30° = 150°Ответ: 150°
    • Автор:

      buffie
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years