• . Радиус основания цилиндра равен его высоте. Прямоугольник АВML – осевое сечение цилиндра. Точки M, L, С лежат на одной окружности основания этого цилиндра, причем величина дуги МС равна 60°. Найдите угол между прямой АС и осью цилиндра.

Ответы 1

  • Прямая АС и ось цилиндра ОО1 лежат в разных плоскостях и не пересекаются. Они скрещивающиеся. 

     Чтобы найти угол между скрещивающимися прямыми,  нужно провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу  между исходными скрещивающимися.

     Осевое сечение цилиндра - прямоугольник, перпендикулярный основаниям. Его сторона АL параллельна оси ОО1.  

    ⇒ угол САL- искомый. 

    ∆ МОС равнобедренный (образован радиусами), его центральный угол МОС=60° (равен дуге МС), поэтому углы при основании МС равны по 60°

    Вписанный угол МСL, как опирающийся на диаметр ML , равен 90°. => ∆ МСL- прямоугольный.  

    СL=ML•sinСML 

    СL=2R•sin60°=2R•√3/2=R√3 

     tg∠LАC=CL:AL=R√3/R=√3 – это тангенс 60°

     Угол между прямой АС и осью цилиндра равен 60°

    answer img
    • Автор:

      ruffevowx
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years