1) площадь боковой поверхности пирамиды.Sбок = (1/2)Р*А (Р - периметр основания, А - апофема).Р = 3*(4√3) = 12√3.А = √(СМ²-(ВС/2)²) = √(25-12) = √13. Sбок = (1/2)*(12√3)*√13 = 6√39.2) объем пирамиды.V = (1/3)So*H (So - площадь основания, Н - высота пирамиды).So = a²√3/4 = 48√3/4 = 12√3.H = √(5²-((2/3)h)²) = √(25-((2/3)*6)²) = √(25-16) = √9 = 3.V = (1/3)*(12√3)*3) = 12√3.3) угол α между боковым ребром и плоскостью основания.α = arc sin(H/AM) = arc sin (3/5) =
0,643501 радиан =
36,8699°. 4) скалярное произведение векторов 0,5( МВ+МС) ЕА, где Е- середина ВС - из за большого объёма задания этот вопрос надо рассматривать отдельно. 5) объем вписанного в пирамиду шара.Проведём осевое сечение пирамиды через боковое ребро.Высота АД основания (она же и медиана, и биссектриса) равна:АД = a*cos30° = (4√3)*(√3/2) = 6.Вписанный шар в этом сечении - вписанная окружность в треугольник АМД радиусом R.R = (abc)/(4S), где S - сечение треугольника АМД.S = (1/2)AD*H = (1/2)6*3 = 9.Тогда R = (5*6*√13)/(4*9) = 5√13/6 ≈
3,004626.Объём шара Vш = (4/3)πR³ = ((4/3)π*125*13√13)/(3*216) = (π*1625√13)/162 ≈ π*
36,1668.6) угол между стороной основания и плоскостью боковой грани.Для этого надо найти плоский угол между стороной (пусть это АС) и её проекцией на плоскость грани СМВ.Проекция АС на АМС - это отрезок АК, Точка К лежит на апофеме АД,Найдём длину АК: AK = 2S(AMD)/MД.S(AMД) = (1/2)АД*Н = (1/2)6*3 = 9.АК = (2*9)/(√13) = 18/(√13) ≈
4,992302.Определим длину отрезка СК:Для этого надо узнать длину отрезка КД:КД = √(АД²-АК²) = √(36-(324/13)) = 12/√13 ≈
3,328201.Тогда СК = √(СД²+КД²) = √((2√3)²+(144/13)) = 10√3/√13 ≈
4,803845.Теперь известны все стороны треугольника АКС, чтобы определить угол АСК, являющийся углом β между стороной АС и плоскостью грани СМВ.cos β = (AC²+КС²-АК²)/(2*АС*КС) = = ((4√3)²+(10√3/√13)²-(18/√13)²)/(2*(4√3)*(10√3/√13)) = =
0,693375245.Отсюда β = 0.804633677 радиан = 46,10211375°.