• Найти неопределённый интеграл, используя выделение полного квадрата.
    [tex] \int\limits { \frac{17x+5}{x^2-12x+40} } \, dx [/tex]

Ответы 1

  • \displaystyle  \int\limits  \ \frac{17x+5}{x^2-12x+40}  dx = \int\limits  \ \frac{17x+5}{(x-6)^2+4}  dx =\{x-6=t;\,\, dx=dt\}=\\ \\ \\ = \int\limits  \ \frac{17t+107}{t^2+4}  dt = \int\limits  \ \frac{17t}{t^2+4}  dt+  \int\limits  \ \frac{107}{t^2+4}  dt=\\ \\ \\ = \frac{17}{2}  \int\limits  \ \frac{d(t^2+4)}{t^2+4} +107 \int\limits  \ \frac{dt}{t^2+2^2} = \frac{17}{2} \ln|t^2+4|+ \frac{107}{2} arctg \frac{t}{2} +Cгде t=x-6
    • Автор:

      doodles
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years