1. sin2x>1/2 2x∈(π/6+2πn;5π/6+2πn) x∈(π/12+πn;5π/12+πn) n∈Z2. tgx>-1 (-π/4+πn;π/2+πn) n∈Z3. ctgx=√3/3 x=π/3+πn n∈Z4 sinx/3= -√2/2 x/3=(-1)ⁿ⁺¹π/4+πn x= (-1)ⁿ⁺¹3π/4+3πn n∈Z5. x-π/2=π/3+πn x=π/2+π/3+πn n∈Z6. ctgx=z 7z²+2z-5=0 D=4+140=144 √144=12z1=1/14[-2-12]=-1 z2=1/14[-2+12]=10/14=5/7ctgx=-1 x=3π/4+πn n∈Zctgx=5/7 x=arcctg(5/7)+πn n∈Z7. cos9x-cosx=-2sin5xsin4x=0 sin5x=0 5x=πn x=πn/5 sin4x=0 x=πn/4 n∈Z8. tgx=z 2z²+3z-2=0 D=9+16=25 √25=5 z1=1/4[-3-5]=-2 z2=1/4[-3+5]=0.5tgx=-2 x=arctg(-2)+πntgx=0.5 x=arctg(0.5)+πn n∈Z