• Знайти суму 12 перших членів геометричної прогресії якщо а4 = 12 а7= 20

Ответы 2

  • сколько в конце выйдет?
  • Нехай послідовність \{a_n\} - геометрична прогресія.Загальна формула n-го члену геометричної прогресії визначається наступним чином:  a_n=a_1q^{n-1}Користуючись цієї формулою, будемо мати\displaystyle \left \{ {{a_4=12} \atop {a_7=20}} ight. \Rightarrow \left \{ {{a_1q^3=12} \atop {a_1q^6=20}} ight.\\ \\ a_1q^3\cdot q^3=20\\ 12\cdot q^3=20\\ \\ q^3= \frac{5}{3} \\ \\ q=  \frac{\sqrt[3]{45} }{3} \\ a_1=7.2Сума перших 12 членів геометричної прогресії:S_n= \frac{a_1(1-q^n)}{1-q}\,\,\,\,\, \Rightarrow\,\,\,\,S_{12}= \frac{a_1(1-q^{12})}{1-q} =  \frac{1088+ \frac{1088}{3}( \sqrt[3]{45}+ \sqrt[3]{75})  }{15}
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years