• Решить уравнение:sin4 2x + cos4 2x = \frac{5}{8}

    В ответе указать ( в градусах) число корней на промежутке [0; 180] градусов.


Ответы 1

  • sin^4 (2x) + cos^4 (2x) = 5/8sin^4 (2x) + 2sin(2x)*cos(2x) + cos^4 (2x) - 2sin(2x)*cos(2x) = 5/8(sin^2 (2x) + cos^2 (2x))^2 - sin 4x = 5/81^2 - sin 4x = 5/8sin 4x = 1 - 5/8 = 3/84x = (-1)^n * arcsin(3/8) + pi*n = (-1)^n * arcsin(3/8) + 180°*nx = (-1)^n * 1/4*arcsin(3/8) + pi/4*n = (-1)^n * 1/4*arcsin(3/8) + 45°*nНа промежутке [0; 180] находятся корниx1 = 1/4*arcsin(3/8) ≈ 5,506°x2 = 1/4*arcsin(3/8) + 45° ≈ 50,506°x3 = 1/4*arcsin(3/8) + 2*45° ≈ 95,506°x4 = 1/4*arcsin(3/8) + 3*45° ≈ 140,506°
    • Автор:

      toni
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years