• Найдите производную функцию.Срочно...
    y=4cosx/2
    y=x-cos(2x-pi/3)

Ответы 2

  • y' = (4 cos (x/2))' = 4 * (-sin(x/2)) * (1/2) = - 2 sin(x/2)y' = (x - cos(2x - pi/3))' = 1 - (-sin(2x - pi/3) * 2) = 1 + 2 sin(2x - pi/3)Использовалась формула производной сложной функцииf(g(x))' = f'(g(x)) * g'(x)Также производная суммы (или разности) равна сумме (разности) производных.Например, во втором случае имеем разность и сложную функцию. Поэтому отдельно берём производную от икса (x)' = 1 и от косинуса, которая уже сложная функция, т.к. под синусом находится другая функция, а именно g(x) = 2x - pi/3.f(g(x)) = cos(2x - pi/3)Производная g(x) понятна g'(x) = 2, т.к. pi/3 - это константа, производная которой равна нулю, а производная показательной функции по формуле (x^n)' = n * x^(n-1)Производная от косинуса берёт без учёта аргумента, он просто переписывается. А производная от косинуса это минус синус. Вот и получилось (-sin(2x- pi/3).Перемножив производные от синуса и показательной функций, получаем результат.
  • y`=(4cosx/2)`*(x/2)`=-4sinx/2 *1/2=-2sin(x/2)y`=(x)`-(cos(2x-π/3))`*(2x-π/3)`=1+sin(2x-π/3) *2=1+2sin(2x-π/3)
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years