A(-1,3,6)\; ,\; \; B(-6,2,6)\; ,\; \; C(-3,7,10)\; .\\\\1)\; \; \overline {AB}=(-6+1,2-3,6-6)=(-5,-1,0)\\\\\overline {AB}=-5\vec {i}-\vec {j}\; \; ,\; \; |\overline {AB}|=\sqrt{25+1}=\sqrt{26}\\\\\overline {AC}=(-3+1,7-3,10-6)=(-2,4,4)\\\\\overline {AC}=-2\vec{i}+4\vec {j}+4\vec{k}\; \; ,\; \; |\overline {AC}|=\sqrt{4+16+16}=\sqrt{36}=62)\; \; \overline {AB}\cdot \overline {AC}=10-4+0=6\\\\cos\varphi =\frac{\overline {AB}\cdot \overline {AC}}{|\overline {AB}|\cdot |\overline {AC}|} =\frac{6}{\sqrt{26}\cdot 6}=\frac{1}{\sqrt{26}}\\\\\varphi =arccos\frac{1}{\sqrt{26}}3)\; \; A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\\\-5\cdot (x+3)-1\cdot (y-7)+0\cdot (z-10)=0\\\\-5x-y-8=0\\\\\pi :\; \; 5x+y+8=0