• Какими целыми числами выражаются стороны равнобедренного треугольника, если радиус вписанной окружности равен 3/2 см, а описанной 25/8 см?

Ответы 1

  • Радиусы вписанной в равнобедренный треугольник и описанной около равнобедренного треугольника окружности равны соответственно:r = \dfrac{b}{2} \sqrt{ \dfrac{2a - b}{2a + b} } \\ \\ R = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } = \dfrac{a^2}{ \sqrt{(2a - b)(2a + b)} } ,где a - боковая сторона, b - основание, r - радиус вписанной окружности, R- радиус описанной окружности.Сделаем замену переменных, чтобы было легче преобразовывать.Пусть t = 2a - b, \ \ z = 2a + b 2r = b \sqrt{\dfrac{t}{z} } \\ \\ R = \dfrac{a^2}{ \sqrt{tz} } \\ \\ \\ 3 = b \sqrt{\dfrac{t}{z} } \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{tz} } Разделим первое уравнение на второе: \dfrac{3}{ \dfrac{25}{8} } = \dfrac{b \sqrt{t} \sqrt{tz} }{ \sqrt{z}a^2 } \\ \\ \\ \dfrac{24}{25} = \dfrac{bt}{a^2} Сделаем обратную замену: \dfrac{24}{25} = \dfrac{b(2a - b)}{a^2} \\ \\ 24a^2 = 50ab - 25b^2 \\ \\ 24a^2 - 50ab + 25b^2 = 0 \ \ \ \ \ \ \ \ \ |: b^2 \\ \\ 24 \dfrac{a^2}{b^2} - 50 \dfrac{a}{b} + 25 = 0 Пусть x = \dfrac{a}{b} 24x^2 - 50x + 25 = 0 \\ \\ D = 2500 - 25 \cdot 4 \cdot 24 = 100 = 10^2 \\ \\ x_1 = \dfrac{50 + 10}{24 \cdot 2} = \dfrac{60}{12 \cdot 4} = \dfrac{5}{4} \\ \\ x_2 = \dfrac{50 - 10}{24 \cdot 2} = \dfrac{40}{48} = \dfrac{5}{6} Значит, боковая сторона относится к основанию как 5:4, либо как 5:6.Обратная замена: \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ a = 1,25b \\ \\ \dfrac{25}{8} = \dfrac{6,25b^2}{ \sqrt{4 \cdot 6,25b^2 - b^2 } } \\ \\ \dfrac{25}{8} = \dfrac{25b^2}{16 \sqrt{25b^2 - b^2} } \\ \\ \\ 1 = \dfrac{b^2}{2 \sqrt{24b^2} } \\ \\ 2 = \dfrac{b^2}{2 \sqrt{6}b } \\ \\ 4 = \dfrac{b}{ \sqrt{6} } \\ \\ b = 4 \sqrt{6}  Получилось, что основание выражается иррациональным числом. Значит, данное значение не подходит.Теперь решим второе уравнение: \dfrac{a}{b} = \dfrac{5}{6} \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ \\  \dfrac{b}{a} = 1,2 \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ b = 1,2a \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - 1,44a^2} } \\ \\ \dfrac{25}{8} = \dfrac{a}{ \sqrt{2,56} } \\ \\ \dfrac{25}{8} = \dfrac{a}{1,6} \\ \\ a = 5 \\ \\ b = 1,2a = 6 Значит, боковая сторона равна 5 см, а основание - 6 см.Ответ: 5 и 6. 
    • Автор:

      amelie
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years