• Диагонали выпуклого четырехугольника ABCD пересекаются в точке E, причем AB=AD, CA — биссектриса угла C, ∠BAD=140∘, ∠BEA=110∘. Найдите градусную величину угла CDB.

Ответы 1

  • Решение  Углы при основании BD равнобедренного треугольника BAD и равны по 20°. Значит,  ∠CAD = ∠AEB – ∠ADE = 90°.   Продолжим стороны BC и AD до пересечения в точке F. Поскольку биссектриса CA треугольника CDF является его высотой, то треугольник CDF – равнобедренный. Поэтому  FA = AD = AB.   Поскольку медиана AB треугольника BFD равна половине стороны DF, то  ∠DBF = 90°.  Поэтому  ∠CDF = ∠BFD = 90° – ∠BDF = 70°.   Следовательно,  ∠CDB = ∠CDF – ∠BDA = 50°.ответ 50 градусов
    • Автор:

      mcdowell
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years