Для нахождения экстремумов (в т.ч. минимумов), нужно взять производную, приравнять её нулю и решить. Полученные значения проверить на максимум и минимум.
+3)
Область допустимых значений x >-6
+3)'=1- \frac{1}{x+6} =0 \\ \\ \frac{1}{x+6} =1 \\ \\ x+6=1 \\ \\ x=-5)
Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ).
 = 1- \frac{1}{-5,5+6} =1- \frac{1}{0,5} =1-2=-1\ \textless \ 0)
Справа, или больше (-5) выбираем х = 0.
 = 1- \frac{1}{0+6} =1- \frac{1}{6} = \frac{5}{6} \ \textgreater \ 0)
Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.